9-2 The Substitution Method

Objective: To use the substitution method to solve systems of linear equations.

Example 1	Solve by the substitution method: $x + y = 9$ 2x + 3y = 20
Solution	1. Solve the first equation for y. $x + y = 9$ y = 9 - x
	2. Substitute this expression for y in the other equation, and solve for x. 2x + 3(9 - x) = 20 $2x + 27 - 3x = 20$ $-x + 27 = 20$ $-x = -7$ $x = 7$
	3. Substitute the value for x in the equation in Step 1, and solve for y. y = 9 - x $y = 9 - 7$ $y = 2$
	4. Check $x = 7$ and $y = 2$ in $x + y = 9$ $2x + 3y = 20$ both equations. $7 + 2 \stackrel{?}{=} 9$ $2(7) + 3(2) \stackrel{?}{=} 20$ $9 = 9 \sqrt{14 + 6 \stackrel{?}{=} 20}$ $20 = 20 \sqrt{14}$
	The solution is (7, 2).

Solve by the substitution method.

1. $y = 3x$	2. $y = 2x$	3. $a = 4b$
x + y = 12 (3, 9)	5x - y = 12 (4, 8)	a - b = 9 (12, 3)
4. $m = 5n$	5. $y = x - 1$	6. $y = 4x - 1$
3m - 2n = 26 (10, 2)	2x + y = 5 (2, 1)	x + y = 4 (1, 3)
7. $x + y = 3$	8. $x - y = 2$	9. $3x - y = -9$
2x - y = 6 (3, 0)	x - 2y = -1 (5, 3)	4x + y = -5 (-2, 3)
10. $2x + y = 1$	11. $3x + y = 7$	12. $x - 3y = -5$
3x + 2y = 3 (-1, 3)	2x - 5y = -1 (2, 1)	2x - 5y = -9 (-2, 1)
13. $4x - 2y = 5$	14. $2x + y = 3$	15. $3y - x = -8$
$x - 4y = 3(1, -\frac{1}{2})$	3x + 2y = 5 (1, 1)	5y + 2x = -6 (2, -2)
16. $3x + y = 2$	17. $x + 2y = 7$	18. $x - 3y = 2$
2x + 3y = -8 (2, -4)	2x - y = 4 (3, 2)	x = -y - 6 (-4, -2)
19. $x - 5 = y$	20. $y - 3 = -2x$	21. $x + 8 = 2y$
5x + 2y = 4 (2, -3)	3x - 2y = -20 (-2, 7)	4x + y = 13 (2, 5)
22. $3u + v = 8$	23. $2x - y = 2$	24. $5x - 4y = -10$
$\frac{u}{4} - \frac{v}{2} = 3$ (4, -4)	$x = \frac{2}{3}y$ (4, 6)	$x = \frac{3}{5}y$ (6, 10)

DATE _____

9-2 The Substitution Method (continued)

Example 2	Solve by the substitution method:	2x - 6y = 8 $x - 3y = 10$
Solution	x - 3y = 10 x = 10 + 3y 2x - 6y = 8 2(10 + 3y) - 6y = 8	The <i>false statement</i> indicates that there is <i>no</i> ordered pair (x, y) that satisfies both
	$20 + 6y - 6y = 8$ $20 = 8 \leftarrow \text{False}$ The system has <i>no solution</i> .	equations. (If you graph the equations, you'll see that <i>the lines are parallel</i> .)

Example 3	Solve by the substitution method: $\frac{y}{3} = 3 - x$ 3x + y = 9			
Solution	$\frac{y}{3} = 3 - x$ Multiply both sides by 3 to solve for y. y = 9 - 3x			
	3x + y = 9 3x + (9 - 3x) = 9 3x + 9 - 3x = 9 $9 = 9 \leftarrow \text{True}$ The true statement indicates that every ordered pair (x, y) that satisfies one of the equations also satisfies the other. (If you graph the equations, you'll see that the lines coincide.)			
The system has infinitely many solutions.				

Solve by the substitution method.

25.	$ \begin{array}{l} x - 3y = -2 \\ y = 2x - 1 \end{array} $ (1, 1)	26. $x + 2y = 7$ 2x + 4y = 8 No solution	27. $y = 2x - 3$ 2y = -3x + 8 (2, 1)
28.	$\frac{x}{2} = 3 - y$	29. $9x - 5y = 105$	30. $\frac{x}{3} = 2 + y$
	x + 2y = 6 Infinitely many solutions	$\frac{1}{4}x - \frac{2}{5}y = -1$ (20, 15)	3x - 9y = -4 No solution

Mixed Review Exercises

Write an equation in slope-intercept form for each line described.

1. slope
$$\frac{1}{2}$$
, passes through $(-2, 4)y = \frac{1}{2}x + 5$ 2. slope $\frac{2}{3}$, passes through $(3, -3) y = \frac{2}{3}x - 5$
3. slope 3, y-intercept 2 $y = 3x + 2$
4. passes through $(2, 7)$ and $(0, -3) y = 5x - 3$
5. passes through $(2, -4)$ and $(-1, 1)$
 $y = -\frac{5}{3}x - \frac{2}{3}$
6. slope 0, y-intercept $-3 y = -3$

156