\qquad
\qquad

9-2 The Substitution Method

Objective: To use the substitution method to solve systems of linear equations

Example 1	Solve by the substitution method: $\begin{aligned} & x+y=9 \\ & 2 x+3 y=20 \end{aligned}$
Solution	1. Solve the first equation for y. $\begin{aligned} x+y & =9 \\ y & =9-x \end{aligned}$
	2. Substitute this expression for y in the other equation, and solve for x. $\begin{aligned} 2 x+3(9-x) & =20 \\ 2 x+27-3 x & =20 \\ -x+27 & =20 \\ -x & =-7 \end{aligned}$
	3. Substitute the value for x in the equation in Step 1, and solve for y. $\begin{aligned} & y=9-x \\ & y=9-7 \end{aligned}$
	4. Check $x=7$ and $y=2$ in $\begin{array}{rlrl} x+y & =9 & 2 x+3 y & =20 \\ 7+2 & \stackrel{?}{=} 9 & 2(7)+3(2) & \stackrel{?}{=} 20 \\ 9 & =9 & 14+6 & \stackrel{?}{=} 20 \\ 20 & =20 \end{array}$

The solution is $(7,2)$

Solve by the substitution method

1. $y=3 x$
2. $y=2 x$
$x+y=12(3,9)$
$5 x-y=12(4,8)$
3. $m=5 n$ $3 m-2 n=26(10,2)$
4. $x+y=3$
$2 x-y=6(3,0)$
5. $y=x-1$ $2 x+y=5(2,1)$
6. $x-y=2$ $x-2 y=-1(5,3)$
7. $2 x+y=1$ $3 x+2 y=3(-1,3)$
8. $3 x+y=7$ $2 x-5 y=-1(2,1)$
9. $a=4 b$ $a-b=9(12,3)$
10. $y=4 x-1$ $x+y=4(1,3)$

$$
\text { 3. } \begin{aligned}
& 4 x-2 y=5 \\
& x-4 y=3\left(1,-\frac{1}{2}\right)
\end{aligned}
$$

14. $2 x+y=3$

$$
3 x+2 y=5(1,1)
$$

17. $x+2 y=7$
$2 x-y=4(3,2)$
18. $3 x-y=-9$ $4 x+y=-5(-2,3)$
19. $x-3 y=-5$ $2 x-5 y=-9(-2,1)$
20. $3 y-x=-8$ $5 y+2 x=-6(2,-2)$
21. $3 x+y=2$

$$
2 x+3 y=-8(2,-4)
$$

$$
\text { 20. } y-3=-2 x
$$

$x-5=y$
$5 x+2 y=4(2,-3)$
22. $3 u+v=8$
$\frac{u}{4}-\frac{v}{2}=3(4,-4)$
23. $2 x-y=2$

$$
x=\frac{2}{3} y(4,6)
$$

18. $x-3 y=2$

$$
x=-y-6(-4,-2)
$$

21. $x+8=2 y$

$$
4 x+y=13(2,5)
$$

24. $5 x-4 y=-10$
$x=\frac{3}{5} y(6,10)$

9-2 The Substitution Method (continued)

$$
\text { Example } 2 \text { Solve by the substitution method: } 2 x-6 y=8
$$

$$
\text { Solution } \quad x-3 y=10
$$

$$
x=10+3 y
$$

$$
\begin{array}{r}
2 x-6 y=8 \\
2(10+3 y)-6 y=8
\end{array}
$$

$$
20+6 y-6 y=8
$$

$$
20=8 \leftarrow \text { False }
$$

The false statement indicates that there is no ordered pair (x, y) that satisfies both equations. (If you graph the equations, you'll see that the lines are parallel.)

The system has no solution.

$$
\text { Example } 3 \quad \text { Solve by the substitution method: } \quad \begin{aligned}
& \frac{y}{3}=3-x \\
& 3 x+y=9
\end{aligned}
$$

Solution $\quad \frac{y}{3}=3-x \quad$ Multiply both sides by 3 to solve for y.

$$
y=9-3 x
$$

$3 x+y=9 \quad$ The true statement indicates that every $3 x+(9-3 x)=9$ $3 x+9-3 x=9$
$9=9 \leftarrow$ True ordered pair (x, y) that satisfies one of the equations also satisfies the other. (If you graph the equations, you'll see that the lines coincide.)
The system has infinitely many solutions.

Solve by the substitution method.

25. $x-3 y=-2$

$$
\begin{aligned}
& x-3 y=-2 \\
& y=2 x-1(1,1)
\end{aligned}
$$

26. $x+2 y=7$
$2 x+4 y=8$ No solution
27. $y=2 x-3$
28. $\frac{x}{2}=3-y$
29. $9 x-5 y=105$
$x+2 y=6$
Infinitely many solutions
$\frac{1}{4} x-\frac{2}{5} y=-1(20,15)$
30. $\frac{x}{3}=2+y$
$3 x-9 y=-4$ No solution

Mixed Review Exercises

Write an equation in slope-intercept form for each line described.

1. slope $\frac{1}{2}$, passes through $(-2,4) y=\frac{1}{2} x+5$ 2. slope $\frac{2}{3}$, passes through $(3,-3) y=\frac{2}{3} x-5$
2. slope 3 , y-intercept $2 \boldsymbol{y}=3 \boldsymbol{x}+2$
3. passes through $(2,7)$ and $(0,-3) y=5 x-3$
4. passes through $(2,-4)$ and $(-1,1)$
5. slope $0, y$-intercept $-3 \boldsymbol{y}=-3$

$$
y=-\frac{5}{3} x-\frac{2}{3}
$$

